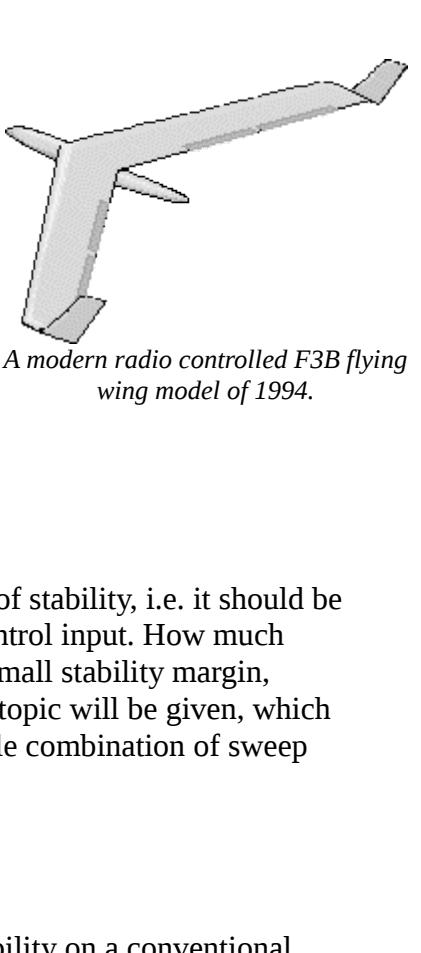


Basic Design of Flying Wing Models

Preface

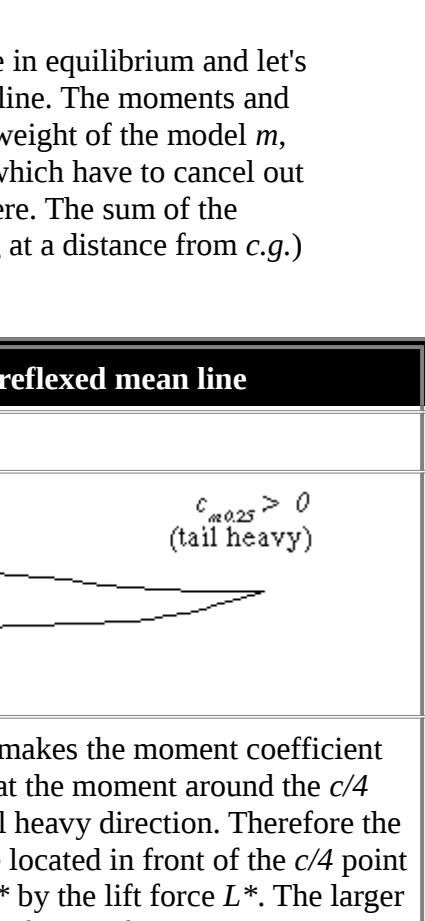
A survey of the available literature on the topic of flying wing and tailless model airplanes shows, that in most cases, the airfoil selection is mentioned, but no reliable data for the selection are available. Due to the dedicated work of various modelers, a huge collection of airfoil coordinates is available today [IJUC], [Bender/Wiechers]. A comparable set of aerodynamic data is more difficult to find, though. This situation and the numerous questions of modelers, concerning the performance and the selection of airfoils for flying wing models, initiated this paper. On this web page, you will find a way to perform the necessary calculations for stable flying wing models. The accompanying collection of airfoil coordinates and polars has been published in [29].



An indoor flying wing model by R. Epple in 1942.

Airfoils for Flying Wings

Tailless planes and flying wings can be equipped with almost any airfoil, if sweep and twist distribution are chosen accordingly. Thus, the one and only "flying wing airfoil" does not exist. However, if we want to design a tailless plane with a wide operating range, the wing should have a small amount of twist only, or none at all, to keep the induced drag at reasonable levels throughout the whole flight envelope. Under these conditions, the wing must not create a large variation in moment coefficient, when the angle of attack is varied. This makes it necessary, to use airfoils with a low moment coefficient. In the case of an unswept wing ("plank"), even an airfoil with a positive moment coefficient is necessary, to avoid upward deflected flaps under trimmed flight conditions. Such airfoils usually have a reflexed camber line.



A modern radio controlled F3B flying wing model of 1994.

Longitudinal Stability

Like its full sized cousins, each model airplane should have a minimum amount of stability, i.e. it should be able to return to its trimmed flight condition after a disturbance by a gust or a control input. How much stability is required, depends on the pilots personal taste: contest pilots prefer a small stability margin, beginners like to fly with a large margin. Here, only a brief introduction into the topic will be given, which will make it possible to find a first guess for the center of gravity and a reasonable combination of sweep and camber for a flying wing.

1. Unswept Wings (Plank)

While the horizontal tailplane provides the necessary amount of longitudinal stability on a conventional plane, it is the wing, which stabilizes an unswept wing. In most cases, airfoils with reflexed (s-shaped) mean lines are used on flying wing models to achieve a longitudinally stable model.

Some important Aerodynamic and Mechanical Facts

To understand, why a reflexed airfoil is able to provide longitudinal stability to a wing, two things are important:

Total Force and Moment, c/4 point

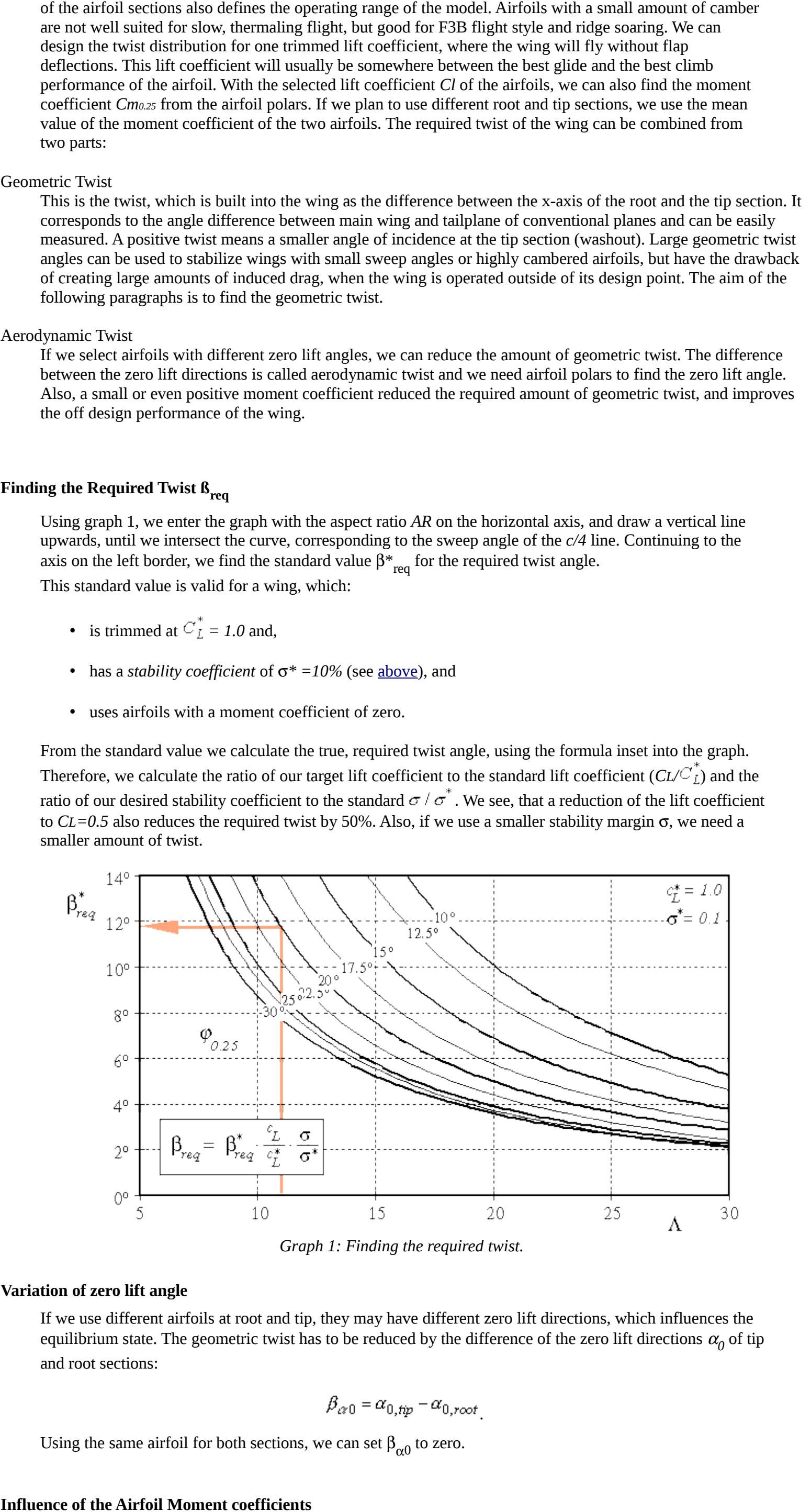
The pressure forces, which act on the surface of each wing section, can be replaced by a single total force and a single total moment. Both act at the *quarter-chord point* of the airfoil. When the angle of attack changes (e.g. due to a gust), the moment stays nearly constant, but the total force changes. Increasing the angle of attack increases the force.

Center of Gravity

Translations and rotations of "free floating" bodies are performed relative to their center of gravity. When the angle of attack of a plane changes, the plane rotates (pitches) around its center of gravity (c.g.).

Equilibrium

Let's have a look at a trimmed flight condition, where all forces and moments are in equilibrium and let's compare a conventional, cambered airfoil with an airfoil with a reflexed camber line. The moments and forces for this trimmed state are denoted with an asterisk (*). The forces are the weight of the model m , multiplied with the gravity acceleration g (9.81m/s) and the aerodynamic lift L , which have to cancel out (sum of forces in vertical direction equals zero). The drag forces are neglected here. The sum of the moments around c.g. (caused by the airfoil moment M and the lift force L , acting at a distance from c.g.) must also be zero.



Neutral Point and Stability

As we learned above, an unswept wing with a reflexed airfoil is able to stabilize itself. Its c.g. must be located in front of the c/4 point, which is also called *neutral point* (n.p.). The distance between the neutral point (quarter chord point for an unswept wing) and the center of gravity is defining the amount of stability - if the c.g. is in front of the n.p., the straightening moment is small and the wing returns (too) slowly to its equilibrium condition. If the distance c.g. - n.p. is large, the c.g. is far ahead of the c/4 point and the wing returns quickly to the equilibrium angle. You will require larger flap deflections to control the model, though. If the distance is too large, the wing may become over-stabilized, overshooting its trimmed flight attitude and oscillating more and more until the plane crashes.

A measure for stability is the distance between c.g. and n.p., divided by the mean chord of the wing. Typical values for this number for a flying wing are between 0.02 and 0.05, which means a *stability coefficient* sigma of 2 to 5 percent. We can express the equilibrium of moments around c.g. for our design lift coefficient C_L^* by

$$C_L^* (x_{c/4} - x_{c,g}) - C_M \cdot l_{\mu} = 0,$$

which can be transformed to find the moment coefficient needed to satisfy a certain stability coefficient:

$$C_M = C_L^* \cdot \sigma.$$

Example We want to use an unswept flying wing (a plank) for ridge soaring and decide to use a target lift coefficient of $C_L^* = 0.5$. We want to have a stability coefficient of 5% and are looking for a matching airfoil. We calculate the necessary moment coefficient

$$C_M = 0.5 * 0.05 = +0.025.$$

Searching through a publication about Epple airfoils [28], we find, that the airfoils E 186 and E 230 could be used for our model.

2. Swept Wings

2.1 Neutral Point and Stability

We have already learned, that the center of gravity must be located in front of the neutral point. While the n.p. of an unswept, rectangular wing is approximately at the c/4 point, the n.p. of a swept, tapered wing must be calculated. The following procedure can be used for a simple, tapered and, swept wing. First, we calculate the mean aerodynamic chord length l_{μ} of a tapered wing, which is independent from the sweep angle:

$$l_{\mu} = \frac{2 \cdot l_r + \lambda \cdot l_t}{l_r + \lambda \cdot l_t},$$

with the root chord l_r , the tip chord l_t and the taper ratio $\lambda = \frac{l_t}{l_r}$.

We can also calculate the spanwise location of the mean chord l_{μ} , using the span b ,

$$y = \frac{l_r - l_{\mu}}{2 \cdot l_r - l_t} \cdot b.$$

The n.p. of our swept wing can be found by drawing a line, parallel to the fuselage center line, at the spanwise station y . The chord at this station should be equal to l_{μ} . The n.p. is approximately located at the c/4 point of this chord line (see the sketch below).

Geometric parameters of a tapered, swept wing.

Instead of using the graphical approach, the location of the neutral point can also be calculated by using one of the following formulas, depending on the taper ratio:

$$x_{n,p} = \frac{l_r + 2 \cdot b \cdot \tan \varphi_{0.25}}{4 + 3 \cdot \pi} \cdot l_{\mu}, \text{ if taper ratio } > 0.375$$

$$x_{n,p} = \frac{l_r + b \cdot (1 + 2 \cdot \lambda)}{4 + \pi \cdot (1 + \lambda)} \cdot \tan \varphi_{0.25}, \text{ if taper ratio } \leq 0.375.$$

The c.g. must be placed in front of this point, and the wing may need some twist (washout) to get a sufficiently stable wing.

2.2 Twist

The selection of the location of the c.g. to be in front of the n.p. is not a guarantee for equilibrium - it is only a requirement for longitudinal stability. Additionally, the aerodynamic moments around the c.g. must be positive, which results in a reduction of the sum of the moments. As explained above for unswept wings, the sum of all aerodynamic moments around the c.g. must be zero. Because we have selected the position of the c.g. already to satisfy the stability criterion (c.g. in front of n.p.), we can achieve the equilibrium of the moments only by airfoil selection and by adjusting the twist of the wing. On conventional airplanes with a horizontal tailplane during the first flight tests. On the other hand, flying wings have the difference built into the wing (twist), which cannot be altered easily. Thus the wing is very brittle. Again, the calculation of these parameters is quite complex and shall not be presented here. The relations are shown in great detail in [27]. Here I will present a simple, approximate approach, which can be used for swept, tapered wings with a linear airfoil variation from root to tip.

We start with the same geometric ratio $AR = b^2/S$, where S is the area of the wing. The n.p. selection of the airfoil sections also defines the aspect ratio $AR = b^2/S$, where S is the wing area. The selection of camber, twist and airfoil section are not well suited for slow, thermalizing flight, but good for F3B flight where the wing will fly without flap deflections. This lift coefficient will usually be somewhere between the best glide and the best climb coefficient of the airfoil. With the selected lift coefficient C_L of the airfoil, we can also find the moment coefficient of C_m from the airfoil polar of the two airfoils. If we plan to use different root and tip airfoils, we can use the mean of the moment coefficient of the two airfoils. The required twist of the wing sections can be calculated from two parts:

Geometric Twist

This corresponds to the twist, which is built into the wing between the angle of incidence of the root and the tip section. It is measured as a positive difference between angle of incidence and tailplane angle of the wing. The geometric twist angles can be used to stabilize wings with small sweep angles or highly cambered airfoils, but the drawback of the following paragraphs is to find the geometric twist.

Aerodynamic Twist airfoils with different zero lift angles, we can reduce the amount of geometric twist. The difference between the zero lift directions of the root and the tip section, which is used for the zero lift angle of the wing, will be reduced by the difference of the zero lift directions of the root and the tip sections:

This standard value is valid for a wing, which is operated outside of its design point. The aim of the following paragraphs is to find the geometric twist:

From the standard value we calculate the true, required twist angle, using the formula inset into the graph.

Therefore, we calculate the ratio of our target lift coefficient to the standard lift coefficient C_L/C_L^* and the ratio of our desired stability coefficient to the standard stability coefficient σ/σ^* . We see, that a reduction of the lift coefficient to $C_L = 0.5$ also reduces the required twist by 50%. Also, if we use a smaller stability margin σ , we need a smaller amount of twist.

which is used here. We consider a flying wing model with the following data:

$C_L^* = 0.5$, $\sigma^* = 0.05$, $AR = 1.0$, $l_{\mu} = 0.265$ m, $b = 0.326$ m, $l_r = 0.170$ m, $l_t = 0.100$ m, $\varphi_{0.25} = 20^\circ$, $\varphi_{1.0} = 11.8^\circ$, $\varphi_{0.0} = 0^\circ$.

We calculate the wing area $S = (l_r + l_t)/2 \cdot b = 0.5085$ m²

and the aspect ratio $AR = b^2/S = 11.0$.

and the mean moment coefficient

$$C_m = (C_{m,r} + C_{m,t})/2 = 0.02.$$

Using graph 1, we find $\beta_{req} = 11.8^\circ$, which has to be corrected to match our design lift coefficient and the desired stability margin:

$$\beta_{req} = \beta_{req}^* - \beta_{req}^* \cdot \frac{C_L}{C_L^*} = 11.8^\circ - 11.8^\circ \cdot 0.5/0.5 = 0.0^\circ.$$

which means the airfoil model is twisted 0 degrees.

Graph 1: Finding the required twist.

</